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BACKGROUND: Exposure to excessive heat, which will continue to increase with climate change, is associated with increased morbidity due to a range
of noncommunicable diseases (NCDs). Whether this is true for diabetes is unknown.

OBJECTIVES:We aimed to quantify the relationship between heat exposure and risk of hospitalization due to diabetes in Brazil.
METHODS: Data on hospitalizations and weather conditions were collected from 1,814 cities during the hot seasons from 2000 to 2015. A time-
stratified case-crossover design was used to quantify the association between hospitalization for diabetes and heat exposure. Region-specific odds
ratios (ORs) were used to calculate the attributable fractions (AFs).
RESULTS: A total of 553,351 hospitalizations associated with diabetes were recorded during 2000–2015. Every 5°C increase in daily mean tempera-
ture was associated with 6% [OR=1:06; 95% confidence interval (CI): 1.04, 1.07] increase in hospitalization due to diabetes with lag 0–3 d. The
association was greatest (OR=1:18; 95% CI: 1.13, 1.23) in those ≥80 y of age, but did not vary by sex, and was generally consistent by region and
type of diabetes. Assuming a causal association, we estimated that 7.3% (95% CI: 3.5, 10.9) of all hospitalizations due to diabetes in the hot season
could be attributed to heat exposure during the study period.

DISCUSSION: Short-term heat exposure may increase the burden of diabetes-related hospitalization, especially among the very elderly. As global tem-
peratures continue to rise, this burden is likely to increase. https://doi.org/10.1289/EHP5688

Introduction
Diabetes mellitus is an important public health concern affecting
an estimated 422 million (including both diagnosed and undiag-
nosed) people worldwide (Zhou et al. 2016). It is a heterogeneous
condition that is comprised mainly of type 2 diabetes (75–85%),
with type 1 diabetes constituting 5–10% of all diabetes (WHO
2016a). In recent years, numerous studies have suggested that cli-
mate change—especially global warming—is associated with
morbidity from many noncommunicable diseases (NCDs) (Watts
et al. 2018). The impact of an increase in mean temperature on
diabetes-related morbidity is unknown. Compared to the general
population, individuals with diabetes are more sensitive to
extreme temperatures, especially heat, because of impaired ther-
moregulatory control, regardless of their diabetes type (Kenny
et al. 2016). Several time-series studies have suggested that
short-term heat exposure is associated with an increase in mortal-
ity due to diabetes (Li et al. 2014; Luan et al. 2018; Schwartz
2005; Seposo et al. 2017; Yang et al. 2016). Similarly, a previous
study from the United Kingdom reported 10% increased odds of
seeking medical consultation for every 1°C increase above 22°C

among individuals with type 2 diabetes (Hajat et al. 2017). The
effect of heat exposure on risk of diabetes-related hospitalization
in the United States has also been examined but with conflicting
results: one study (Semenza et al. 1999) reported that heatwaves
were associated with a 30% increase in hospital admissions
related to diabetes, whereas a second study showed no associa-
tion (Knowlton et al. 2009).

About 75% of the burden of diabetes occurs in low- and
middle-income countries, especially those constituting the BRIC
(Brazil, Russia, India, and China) nations (Dagenais et al. 2016).
From 2000 to 2015, the prevalence of diabetes in Brazil rose
from 3.6% to 6.1% (Duncan et al. 2017), roughly the equivalent
of 12 million people, placing Brazil as the fourth-highest country
in the world in the number of people living with diabetes (Zhou
et al. 2016). Brazil is also one of the countries most affected by
global warming. It has reported a 2°C increase in surface temper-
ature from 1901 to 2012, considerably higher than most other
countries (Myhre et al. 2013).

In this study, we characterize the association between short-
term heat exposure and risk of hospitalization associated with di-
abetes in the Brazilian population, using a national hospitaliza-
tion data set spanning from 2000 to 2015. Further, we explored
whether the association was consistent across types of diabetes
and within subgroups of the population based on age, sex, and
region. Finally, assuming a causal association, we estimated the
fraction of all hospitalizations associated with diabetes that could
be attributable to heat exposure.

Methods

Data Collection
Data on hospitalization for diabetes between 1 January 2000 and
31 December 2015 were collected from 1,814 Brazilian cities,
which comprised 78.4% of the national population. These cities
were located in five regions (north, northeast, central west, south-
east, and south) that are officially defined by the Brazilian gov-
ernment based on physical, political, social, and economic
similarities (Duran 2013) (Figure 1). Individual data for each
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patient were collected from the Brazilian Unified Health System
(BUHS). The data included information on the date of admission,
primary diagnosis, sex, and age. The primary diagnosis was
coded according to the International Statistical Classification of
Diseases and Related Health Problems, 10th Revision (ICD-10).
We only extracted hospitalization data with ICD-10 codes (E10,
E11, E12, E13, and E14) for diabetes mellitus. The four-
character subdivisions of E10−E14 were used to define the com-
plications of diabetes. For example, E10.0 and E10.7 refer to
type 1 diabetes with coma and multiple complications, respec-
tively (see Table S1 or WHO 2016b). To be consistent with pre-
vious studies (Hajat et al. 2017; Knowlton et al. 2009; Li et al.
2014; Luan et al. 2018; Schwartz 2005; Semenza et al. 1999;
Seposo et al. 2017; Yang et al. 2016), we did not include gesta-
tional diabetes, which is a condition of pregnancy.

The daily minimum and maximum temperatures were sourced
from a national meteorological data set (0:25� ×0:25� resolution).
This data set was interpolated by Xavier et al. (2016) using the
inverse distance weighting approach with data from 735 weather
stations. City-specific weather conditions were represented using
the center for each city. In this study, we used daily mean temper-
ature, calculated by the average of daily minimum and maximum
temperatures, to estimate the effect of heat exposure on risk of
hospitalization due to diabetes, because it reflects the general
thermal characteristics for each day (WMO 2011).

Data on daily relative humidity were collected from city-
specific weather stations through the Brazilian National Institute

of Meteorology. However, humidity data were only available for
193 cities during 2000–2012. We did not collect data on daily air
pollution because of the lack of air quality–monitoring stations in
Brazilian cities. Further, air pollution is more likely to be a medi-
ator than a true confounder of the association between tempera-
ture and health, and thus should not be adjusted for (Buckley
et al. 2014).

This study was approved by the Monash University Human
Research Ethics Committee. The Brazilian Ministry of Health did
not require ethical approval or informed consent for secondary
analysis of aggregated anonymized data from the BUHS.

Statistical Analyses
Assessing the temperature–hospitalization association. As this
study focused on the effect of heat exposure (high temperature),
we restricted our analyses to the hot season to be consistent with
previous studies (Alessandrini et al. 2011; Basu et al. 2012;
Bhaskaran et al. 2012; Isaksen et al. 2015). We defined the hot
season as the adjacent 4 hottest months for each city in Brazil
(Zhao et al. 2019). According to this definition, the exact calen-
dar months of hot season varied by city. For example, the hot sea-
son of São Paulo was December to March, while the hot season
of Manaus was August to November. The association between
hospitalization for diabetes and heat exposure was evaluated by a
time-stratified case-crossover design with conditional logistic
regression models (Levy et al. 2001; Li et al. 2016). For each

Figure 1. Location of 1,814 cities in Brazil enrolled in the study and their mean temperatures in hot seasons from 2000 to 2015. Hot season was defined as the
city-specific adjacent 4 hottest months and varied by city (e.g., December to March for São Paulo, August to November for Manaus).
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admission, the daily mean temperature during the risk period was
compared with those in the same city during the control periods.
Control periods comprised the same days of the week in the same
calendar month for each diabetes mellitus admission as the risk
periods. This design adjusts for time-dependent confounders
(e.g., temporal trend and day of the week) and time-constant con-
founders (e.g., sex, age, individual lifestyle, or behavior) (Janes
et al. 2005a, 2005b).

The relationship between diabetes mellitus admission and
heat exposure was fitted by a cross-basis function (Guo 2017).
Our initial analyses showed that the association was linear and
persisted for 3 d. Therefore, we used a linear function for the ex-
posure–response dimension. We used a natural cubic spline
(Chen et al. 2018; Gasparrini et al. 2010, 2015) with three degrees
of freedom (df) for the lag–response dimension (lag 0–3 d). The
holiday effect was controlled for by adding a dichotomous variable
(whether that date was a holiday) to the model.

Stratified analyses were conducted by types of diabetes melli-
tus, regions, sex, five age groups (0–19, 20–39, 40–59, 60–79, and
≥80 y), and complications. The heat exposure–diabetes hospitali-
zation association was presented as the odds ratio (OR) and 95%
confidence interval (CI) of diabetes hospitalization for every 5°C
increase in daily mean temperature. The OR obtained from our
case-crossover analysis is interpretable as a relative risk (RR), as
the control selection scheme based on density sampling leads to
control times that represent the average exposure in the study popu-
lation (Greenland and Thomas 1982; Hogue et al. 1983). Meta-
regression was applied to check the statistical differences in the
ORs between subgroups or different models in sensitivity analyses.
Specifically, the effect estimates of different subgroups with stand-
ard error (e.g., five region-specific effect estimates; two sex-
specific effect estimates) weremodeled against themeta-predictors
(e.g., region as a categorical variable with five levels; sex as a cate-
gorical variable with two levels).

Several sensitivity analyses were applied to check the robust-
ness of our results. First, we altered the maximum lag days from 3
to 7 d, and changed the df of lag days from 3 to 4. Second, using the
data set of 193 cities that included information on relative humid-
ity, we adjusted for the average relative humidity in lag 0–3 d as a
natural cubic spline with 3 df, to test the potential confounding
effect of humidity. Third, we altered the definition of a hot season
to the 5 or 6 city-specific adjacent hottest months. Finally, we
repeated the main model analyses in cold season (city-specific 4
coldest months) and moderate season (city-specific months other
than cold and hot season). The linearity of the heat exposure–
diabetes hospitalization association was examined by distributed
lag nonlinear models (Gasparrini et al. 2010; Gasparrini 2014).

Calculating the attributable burden of diabetes hospitaliza-
tion related to heat exposure. Assuming a causal relationship,
we estimated the attributable burden of hospitalization for diabe-
tes due to heat exposure for each city using the formula
ACi =Ci � ðRRi − 1Þ=RRi, where RRi is the city-specific cumula-
tive lag 0–3 RR associated with the temperature on day i vs.
the reference temperature, and Ci is the city-specific average dia-
betes hospitalization on day i, i+1, i+2, and i+3 (Gasparrini
and Leone 2014; Hu et al. 2018). RRi was calculated as
RRi =ORðTi − Tref Þ=5

region , where ORregion is the region-specific cumula-
tive lag 0–3 OR (interpretable as the RR) for diabetes hospitali-
zation with a 5°C increase in temperature in the region where the
city is located, Ti is the city-specific daily mean temperature on
day i, and Tref is the city-specific reference temperature. Since
our preliminary analyses had shown the association between tem-
perature- and diabetes-related hospitalization was linear, the ref-
erence temperatures for each city were selected as the city-
specific minimum temperatures in hot season during the study T
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period (Zhao et al. 2019). Total attributable cases (ACs) were
generated by summing the ACi for all included cities during the
study period. The corresponding attributable fractions (AFs) of
hospitalizations associated with diabetes were calculated by
dividing the total AC by total diabetes hospitalization cases. We
repeated the above procedures based on subgroup samples to
obtain AFs of subgroups by sex, age, and type of diabetes.

R software (version 3.3.2; R Development Core Team) was
used to perform all data analyses. The packages survival, dlnm,
and mvmeta were used to fit conditional logistic regression, dis-
tributed lag linear or nonlinear models, and meta-regression,
respectively (Gasparrini et al. 2012). A two-sided p-value of less
than 0.05 was considered to be statistically significant.

Results
The daily mean [± standard deviation (SD)] temperature was
25:3± 2:7�C during the hot seasons in all cities included, ranging
from 23:4±2:6�C in the south to 27:7± 1:5�C in the north during
2000 to 2015 (Table 1). Overall, there was a total of 553,351
(57.5% female) hospitalizations for diabetes with a median age of
60.5 y (interquartile range: 47.7–71.3 y). Among hospitalizations
with a specific primary diagnosis, those associated with type 1 di-
abetes were most frequent (30.9%; 56.8% female; median age:
59.5 y) followed by type 2 diabetes (6.9%; 56.6% female; median
age: 61.7 y). A large proportion of hospitalizations was associ-
ated with unspecified diabetes (54.4%; 58.0% female; median
age: 60.8 y).

In general, daily mean temperatures on case days were
slightly (an average of 0.02–0.07°C) higher than control days in
all regions, and the differences were statistically significant
(p<0:05) in all regions except for the north (Table S2). The non-
significant result in the north could be explained by its smaller

population coverage (only 26% vs. 78–87% in other regions) and
smaller sample size compared to other regions. This could also
explain the lower precision of its region-specific effect estimates
compared to other regions. The time-series plot of daily mean
temperature in a selected city (São Joaquim, the city with the me-
dian SD of daily mean temperature during the study period) is
shown in Figure S1.

Association between temperature and hospitalizations
for diabetes
The association between temperature and hospitalization for diabe-
tes was linear, and the lag patterns were generally similar across
the different types of diabetes (Figure S2; Figure 2; Table S3).
Positive associations between heat exposure and hospitalization
were evident on the same day (lag 0), but associations were inverse
after a 1- to 3-d lag. This pattern is consistent with temporal dis-
placement or harvesting effect, whereby events that would have
occurred in the absence of an exposure occur at an earlier point in
time because of the exposure so that acute positive associations are
followed by inverse associations due to a temporary reduction in
the susceptible population (Hajat et al. 2005). This lag pattern was
consistent across sex, regions, complications, and age groups with
the exception of those ≥80 y of age, for whom the associations
were null or positive for all lags (Figures S3–S5; Table S3).

Figure 3 shows that every 5°C increase in daily mean tempera-
ture was associated with a 6% (OR=1:06; 95% CI: 1.04, 1.07)
greater risk of hospitalization for diabetes hospitalization for lag
0–3 d at the national level. Associations were similar for men and
women. Although there was some variation by diabetes type (they
seem to be stronger in malnutrition-related and other specified dia-
betes) and region, the differences were not statistically significant,
and all associations were positive. There was, however, interaction

Figure 2. The associations between heat exposure (every 5°C increase in daily mean temperature during the hot season) and hospitalization for diabetes melli-
tus [odds ratios with 95% confidence intervals (CIs)] across lag 0–3 d by diabetes subtype. The estimates are for lag 0–3 d and came from time-stratified case-
crossover analyses modeled by conditional logistic regression with a cross-basis function for daily mean temperature. The model was adjusted for public holi-
days. Corresponding numeric data are provided in Table S3. Hot season was defined as the city-specific adjacent 4 hottest months and varied by city (e.g.,
December to March for São Paulo, August to November for Manaus).
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with age such that the effect size increased across successive age
groups above 40 y and was maximal in those ≥80 y of age
(OR=1:18; 95% CI: 1.13, 1.23). Associations were positive
among subgroups defined by the presence or absence of diabetes
complications, except among individuals with ketoacidosis, for
whom the association was null. When the subgroup analyses were
further stratified by different types of diabetes, no clear patterns
emerged (Figure 4; Figures S6–S7; Table S4).

Attributable burden of hospitalizations for diabetes due to
heat exposure
Assuming causality, we estimated that 7.3% (95% CI: 3.5, 10.9)
of all hospitalizations related to diabetes during the hot seasons
[equivalent to 40,543 (95% CI: 19,533; 60,389) hospitalization

cases] could be attributed to heat exposure during the study pe-
riod (Table 2). This fraction was especially high in the elderly,
with nearly one in five hospital admissions for diabetes (19.2%,
95% CI: 6.5, 29.5) related to heat exposure.

Results of sensitivity analyses
Sensitivity analyses indicated that our results were robust by
changing the df of lag days from 3 to 4 (Table S5). When adding
the maximum lag of daily mean temperature from 3 to 7 d, the
cumulative ORs decreased except for cases of other specific dia-
betes, which is consistent with expectations based on individual
lags of 0–3 d. However, the decreases in cumulative ORs in lon-
ger lags were not statistically significant except for overall and
unspecified diabetes at lag 0–7 d. Adjusting for relative humidity

No. of cases Odds ratio (95% CI
Types of diabetes mellitus

Type 1 171520 1.05(1.02, 1.07) Ref
Type 2 37912 1.07(1.02, 1.12) 0.354
Malnutrition-related 7504 1.11(1.00, 1.24) 0.280
Other specified 35350 1.10(1.04, 1.16) 0.087
Unspecified 301065 1.05(1.04, 1.07) 0.688

Sex
Female 318327 1.06(1.04, 1.07) Ref
Male 235022 1.05(1.03, 1.07) 0.843

Age group (years)
0~19 32706 0.98(0.94, 1.03) Ref
20~39 58386 0.97(0.94, 1.01) 0.688
40~59 179515 1.03(1.01, 1.06) 0.080
60~79 232043 1.09(1.07, 1.11) <0.001
≥80 50700 1.18(1.13, 1.23) <0.001

Region
North 14057 1.06(0.95, 1.19) Ref
Northeast 157006 1.05(1.01, 1.10) 0.845
Central west 49541 1.09(1.04, 1.13) 0.733
Southeast 231223 1.05(1.03, 1.07) 0.823
South 101524 1.06(1.03, 1.08) 0.910

Complications
Without complication 96030 1.08(1.05, 1.11) Ref
Coma 31240 1.11(1.05, 1.17) 0.361
Ketoacidosis 38632 1.00(0.95, 1.05) 0.007
Peripheral circulatory 
complications 56932 1.07(1.03, 1.11) 0.804 

Other complications 317206 1.05(1.03, 1.06) 0.089
With multiple 
complications 13311 1.14(1.05, 1.23) 0.211 

Overall 553351 1.06(1.04, 1.07)

0.90 1.00 1.10 1.20 1.30

p-Values of the 
differences*

Figure 3. The association between heat exposure (every 5°C increase in daily mean temperature during the hot season) and hospitalization for diabetes mellitus
[odds ratios with 95% confidence intervals (CIs)] over lag 0–3 d. The odds ratios represent the cumulative association over lag 0–3 d. They came from time-
stratified case-crossover analyses modeled by conditional logistic regression with a cross-basis function for daily mean temperature. The model was adjusted
for public holidays. Note: p-Values of the differences were estimated by meta-regression to test the difference in effect estimates between subgroups. Hot sea-
son was defined as the city-specific adjacent 4 hottest months and varied by city (e.g., December to March for São Paulo, August to November for Manaus).

Environmental Health Perspectives 117005-5 127(11) November 2019



in a subsample of 193 cities had minimal influence on the results
as estimated by the primary models (Table S6). The results also
remained largely unchanged when defining 5 or 6 adjacent hottest
months as the hot season (Table S7). Every 5°C increase in daily
mean temperature was associated with a smaller increase in

hospitalization for diabetes in the cold season (OR=1:02; 95%
CI: 1.01, 1.03; p-value for the difference between cold and hot
seasons= 0:001) and moderate season (OR=1:04; 95% CI: 1.03,
1.05; p-value for the difference between moderate and hot
seasons<0:169) compared to the hot season (OR=1:06; 95% CI:
1.04, 1.07) (Table S8).

Discussion
To our knowledge, this is the first nationwide study to quantify the
association between heat exposure and risk of hospitalization for
diabetes over a 16-y period. Our findings indicate that in the
Brazilian population, short-term heat exposure during the hot sea-
son was significantly associated with greater risk of hospitalization
related to diabetes. Overall, assuming a cause–effect relationship,
we estimated that 7.3% (95% CI: 3.5, 10.9) of all hospitalizations
associated with diabetes in the hot season could be attributable to
heat exposure. The nature of the relationship was consistent in
women and men but was stronger among older age groups. The
magnitude of the association was similar, irrespective of diabetes
subtype, or in the presence of diabetes-related complications (with
the possible exception of thosewith ketoacidosis).

Our findings are generally consistent with reported observa-
tions from the few previous studies that have examined the rela-
tionship between heat exposure with either diabetes-related
morbidity or mortality. In particular, the greater susceptibility of
the elderly to heat exposure has been consistently documented
(Li et al. 2014; Luan et al. 2018; Schwartz 2005; Seposo et al.
2017; Yang et al. 2016).

The mechanistic pathways underlying the observed associa-
tion between heat exposure and increased risk of hospitalization
for diabetes are not well understood but have been speculated
upon. For example, compared with unaffected individuals, those
with diabetes have impaired thermoregulatory capacity, including
impaired functioning of the sweat glands and low blood flow
reduction during heat exposure, which can reduce the capacity to
dissipate heat effectively (Petrofsky et al. 2005). In addition,

Figure 4. The association between heat exposure (every 5°C increase in daily mean temperature during the hot season) and diabetes hospitalization [odds ratios
with 95% confidence intervals (CIs)], stratified by diabetes subtype and by sex and age group. The odds ratios represent the cumulative association over lag 0–
3 d. They came from time-stratified case-crossover analyses modeled by conditional logistic regression with a cross-basis function for daily mean temperature.
The model adjusted for public holidays. Corresponding numeric data are provided in Table S4. Hot season was defined as the city-specific adjacent 4 hottest
months and varied by city (e.g., December to March for São Paulo, August to November for Manaus).

Table 2. The fraction and cases of hospitalization for diabetes mellitus at-
tributable to heat exposure during the hot seasons from 2000 to 2015 in
Brazil.

No. of attributable
cases (95% CI)

Attributable fraction
(95% CI) (%)

Types of diabetes mellitus
Type 1 11,380 (3,399; 34,168) 6.6 (2.0, 19.9)
Type 2 4,368 (2,328; 14,607) 11.5 (6.1, 38.5)
Malnutrition related 1,454 (−829, 2,784) 19.4 (−11:0, 37.1)
Other specified 4,576 (−78, 8,301) 12.9 (−0:2, 23.5)
Unspecified 18,670 (4,962; 52,286) 6.2 (1.6, 17.4)
Sex
Female 24,448 (14,802; 58,626) 7.7 (4.6, 18.4)
Male 16,125 (4,374; 42,755) 6.9 (1.9, 18.2)
Age group (years)
0–19 N/A N/A
20–39 N/A N/A
40–59 8,277 (2,317; 34,487) 4.6 (1.3, 19.2)
60–79 24,973 (15,484; 53,044) 10.8 (6.7, 22.9)
≥80 9,734 (3,301; 14,935) 19.2 (6.5, 29.5)

Region
North 1,050 (−960, 2,757) 7.5 (−6:8, 19.6)
Northeast 7,786 (1,210; 14,062) 5.0 (0.8, 9.0)
Central west 6,531 (3,332; 9,489) 13.2 (6.7, 19.2)
Southeast 14,866 (9,751; 19,851) 6.4 (4.2, 8.6)
South 10,310 (6,200; 14,230) 10.2 (6.1, 14.0)
Overall 40,543 (19,533; 60,389) 7.3 (3.5, 10.9)

Note: Attributable fractions and attributable cases were not calculated in 0- to 19- and
20- to 39-year-old people because the associations between temperature and diabetes
hospitalization were nonsignificant, and the odds ratios (ORs) were less than 1 in these
two age groups. Hot season was defined as the city-specific adjacent 4 hottest months
and varied by city (e.g., December to March for São Paulo, August to November for
Manaus). The attributable fractions were estimated based on region-specific ORs for cu-
mulative lags (0–3 days) relative to city-specific minimum daily mean temperatures dur-
ing hot seasons from 2000 to 2015. CI, confidence interval; N/A, not applicable.
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some medications used in the treatment of diabetes (particularly
those affecting fluid balance) may exacerbate the risk of heat-
related illness (e.g., dehydration, heat exhaustion) by decreasing
skin blood flow and sweating (Yardley et al. 2013). High ambient
temperatures may also result in a greater insulin peak effect,
thereby increasing the risk of a hypoglycemic episode (Al-Qaissi
et al. 2019; Dumke et al. 2015). This may explain our finding
that there was no association between heat exposure and diabetic
hospitalization among subjects with ketoacidosis (which is
caused by hypoinsulinemia and hyperglycemia). These mecha-
nisms also suggest why elderly individuals with diabetes are par-
ticularly susceptible to heat exposure, as they generally have
poorer thermoregulatory function and worse glucose homeostasis
than younger adults.

Strategies that may ameliorate the diabetes morbidity burden
associated with heat exposure are mainly concerned with modify-
ing behavior, which may be particularly difficult for the very
elderly and those in the lowest socioeconomic groups. For exam-
ple, increasing fluid consumption, staying indoors in an air-
conditioned environment, and reducing normal activity levels are
all effective strategies but may not be feasible for the most disad-
vantaged members of society. Brazil is one of the fastest-aging
countries worldwide. Owing to the decline in both mortality and
fertility, the proportion of people aged 65 y or above in Brazil
will increase to about 35% by 2040 (Cuevas et al. 2017). In addi-
tion, it is predicted that the diabetes prevalence in South and
Central America will increase by 65% from 2015 to 2040
(Ogurtsova et al. 2017). Combined, both factors will increase the
size of the vulnerable population—elderly people with diabetes.
This will pose additional challenges for Brazil’s health care sys-
tem to cope with heat-related diabetes morbidity burden in the
future.

Global warming is a threat to public health in the 21st cen-
tury. It has been estimated that the global mean temperature will
increase 2.7°C by 2100, even if all mitigation strategies in the
Paris Agreement are fully implemented (International Energy
Agency 2015; Watts et al. 2017). Heat exposures and heatwaves
have been shown to increase morbidity due to NCDs, particularly
cardiovascular and respiratory diseases (Phung et al. 2016;
Turner et al. 2012; Watts et al. 2018), and thus, the burden of
these diseases will increase with global warming. We estimated
an RR of 1.06 for diabetes hospitalizations with a 5°C increase in
daily mean temperature. This corresponds to an RR of 1.032
(1:062:7=5) for a 2.7°C increase, or a 3.2% increase in hospital
admissions for diabetes as a result of climate change, assuming
all other risk factors remain unchanged. This underscores the
potential for the diabetes morbidity burden to increase due to cli-
mate change.

The present study has several strengths. First, this is by far
the largest study that has evaluated the association between tem-
perature and diabetes-related hospitalization. Second, with access
to a national data set covering nearly 80% of the Brazilian popu-
lation and spanning 16 y, this study is representative both geo-
graphically and temporally. Moreover, our findings may also be
relevant to other middle-income countries (e.g., China, India).
Finally, as Brazil is a large country with significant diversity in
temperatures, our results are also likely to be relevant to popula-
tions in other South American countries.

However, several limitations of this study should be acknowl-
edged. First, we only had access to grid city-level temperature data
rather than individual-level data, which may have underestimated
the association between heat exposure and diabetes-related hospi-
talization (Guo et al. 2013). Second, consistent with a recent survey
of diabetes hospitalizations in Brazil (Rosa et al. 2018), over half
of the cases (54%) were hospital admissions due to unspecified

diabetes, and another 6.4% were for other specified diabetes.
Because the BUHS covers the cost of all diabetes care, regardless
of ICD-10 subtype, hospitals might lack a financial incentive to
report a specific diagnosis code, and thus, our ability to assess
potential variation in heat-related risks of hospitalization according
to specific subtypes of disease was limited. The estimated heat-
related risk of hospitalization due to unspecified diabetes
(OR=1:05; 95% CI: 1.04, 1.07) was similar to estimates for both
type 1 and type 2 diabetes (OR=1:05; 95% CI: 1.02, 1.07 and
OR=1:07; 95%CI: 1.02, 1.12, respectively), while the association
with other specified diabetes was stronger (OR=1:10; 95% CI
1.04, 1.16; p=0:09 for the difference from type 1 diabetes hospi-
talizations). Third, we were unable to adjust for relative humidity
in the main model due to limited access to relevant data. High lev-
els of relative humidly may have exacerbated the impact of high
temperature by impeding the evaporation of sweat and heat dissi-
pation (Chandler 2001). However, our sensitivity analyses indi-
cated that adjustment for relative humidity in the data set from 193
cities had minimal effects on the overall results. Fourth, due to the
unavailability of relevant data, we could not evaluate whether the
heat effects could be explained or modified by diabetes-related
comorbidities (e.g., cardiovascular diseases, kidney diseases) or
medication use. Finally, due to the nonavailability of data, this study
was restricted to hospitalizations as themeasure ofmorbidity; future
studies using other measures of diabetes-related morbidity such as
emergency room visits, outpatient visits, and general practice con-
sultations are warranted in order to ascertain a more comprehensive
understanding of the burden of diabetes due to heat exposure.

In conclusion, our nationwide analysis indicated that heat expo-
sure was associated with increased risk of diabetes-related hospitali-
zation in Brazil, especially among the very elderly. These findings
add to the expanding evidence base that climate change, and global
warming in particular, is likely to have an increasingly important
and detrimental role in human health over the coming decades.
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